Европейская механика XVII века

РЕНЕ ДЕКАРТ


Изучение физики, согласно Декарту (1596—1650), должно иметь цель сделать людей "господами и хозяевами природы". Этого господства над природой человек может достичь, применив к физическому исследованию методы математики, наиболее совершенной из известных ему наук. Поэтому Декарт поставил себе задачей математизацию физики, или, точнее, ее геометризацию по типу евклидовой геометрии: небольшое число аксиом, само собой очевидных, на которые опирается упорядоченная последовательность выводов, обладающих той же степенью достоверности, что и первичные аксиомы.

Принимая галилееву концепцию вторичных качеств, заключенных не в телах, а в ощущающем субъекте, Декарт кладет в основу своего рассмотрения лишь две сущности — протяженность и движение, которые представляются ему интуитивно понятными, и, будучи убежден в невозможности существования пустоты в природе, наполняет протяженность "тонкой материей", которую бог наделил непрерывным движением. Физический мир состоит, таким образом, только из двух сущностей: материи, простой "протяженности, наделенной формой", лишенной всех качеств, кроме геометрических, и движения. Следовательно, достаточно будет установить законы движения, чтобы вывести затем с помощью ряда последовательных теорем законы чувственного мира.

В своем трактате "Le monde" ("Мир") Декарт не упоминает об относительности движения. Но в "Principia philosophiae" ("Начала философии"), опубликованных в 1644 г., т. е. после появления "Диалога о двух главнейших системах мира", он, возможно под влиянием этого труда Галилея, принимает принцип относительности, делая все же для осторожности ряд оговорок, позволяющих ему формально не вступать в противоречие с положением о неподвижности Земли, требуемым священным писанием. Но если бы страх перед инквизицией не заставлял его скрывать свои мысли, Декарт дал бы более широкое понятие относительности, чем Галилей. Действительно, Галилей, а позже Ньютон верили в абсолютное движение по отношению к пространству, тогда как Декарт утверждал относительный его характер. В частной переписке он писал: "Если из двух человек один движется с кораблем, а второй стоит неподвижно на берегу..., то нет никакого преимущества ни в движении первого, ни в покое второго".

Декартова механика основана на трех законах. Два первых охватывают то, что сейчас  называется принципом  инерции.   Третий  закон  утверждает постоянство количества движения (произведение массы тела, которую Декарт путал с весом, на его скорость). Декарт полагает также количество движения равным произведению приложенной силы на время ее действия и называет это произведение импульсом силы; это название сохранилось в науке и сейчас в том же значении. Третий закон Декарта является по существу центральным пунктом его механики. То, что Декарт сумел выделить его и положить в основу своей  механики, говорит о незаурядной  интуиции автора.

К сожалению, в формулировке этого закона Декарт допускает ошибку, весьма странную для геометра его масштаба. Он не учитывает, что поскольку скорость, как мы бы сейчас сказали и как знал Декарт, является вектором, т. е. величиной, имеющей направление и ориентацию, то и количества движения являются векторами, так что их сумму нужно понимать в геометрическом, а не в алгебраическом смысле. Таким образом, формулировка третьего закона ошибочна. Отсюда неверность вытекающих из него семи правил (за исключением первого), образующих декартову теорию соударения упругих тел.

Некоторые случаи соударения, исследованные Декартом, легко проверяются на опыте. Например, четвертое декартово правило гласит, что если неподвижное тело испытывает центральное соударение с другим телом меньшей массы, то оно остается неподвижным, тогда как движущееся тело меняет направление скорости на обратное с сохранением абсолютной величины скорости. Но достаточно подойти к бильярдному столу, чтобы убедиться в ошибочности этого правила. И Декарт действительно это сделал и установил неверность своих правил. Но он слишком доверял своему разуму и своим "ясным и четким" идеям. Опыт опровергает теоретические построения? Тем хуже для опыта. Опыт не удается, говорит с уверенностью Декарт, потому что эти правила предполагают,"что тела идеально твердые и настолько удалены от всех остальных тел, что ни одно ив этих тел не может способствовать или препятствовать их движению".

Но даже если признать это объяснение правильным, как же мы сможем стать хозяевами природы,  располагая  физикой,   говорящей о явлениях имеющих место в ином мире, а не в том, в котором мы существуем?

Установив законы движения, Декарт в трактате "Мир" и в "Началах философии" начинает свой космологический роман, объясняя образование Солнца, планет, комет. Наконец, он спускается с неба на Землю и устанавливает, что тонкая материя обладает тремя действиями: светом, теплом и тяготением. Этим он создает основы того представления о флюидах, которое господствовало в физике в течение всего XVIII и частично в XIX веке. Эти удобные флюиды, которые, подобно добрым гномам, готовы к услугам в наиболее трудных случаях и скромно действуют скрытно от наших чувств, не представляют ли они, по крайней мере частично, возврат назад, к оккультизму? По нашему мнению, это так.

Совсем иную роль сыграло декартово понятие тяжести. Каждое тело находится, по Декарту, в вихре, будучи окруженным в свою очередь другими вихрями, которые прижимают его к центру. Это стремление к центру и составляет вес тела, т. е. тяжесть. Если бы Галилей это знал, сказал Декарт в известном письме к Мерсенну, ему не нужно было бы строить безосновательную теорию падения тел в пустоте.

Письмо Декарта, которое мы уже упоминали выше, представляет собой резкую критику "Беседы, касающейся двух новых отраслей науки" Галилея и интересно с точки зрения различия мышления обоих ученых: для Декарта физика должна искать ответ на вопрос, почему происходят явления, по Галилею — исследовать, как они происходят; поиски причины — цель Декарта, описание явлений — цель Галилея. В вопросе падения тяжелых тел Декарт не соглашался с законами Галилея и не понимал их, в частности, потому, что его кинематике было чуждо понятие ускорения.

Вес, как и любую силу, Декарт понимал как реакцию связей геометрического типа. Это — свойство движения тонкой материи. Так что, отождествляя ее с пространством и пользуясь более понятной сейчас терминологией, можно сказать, что вес есть свойство пространства.

Обычно говорят, что декартово понимание физики механистично. Но понимание Галилея и Ньютона тоже было механистичным, потому что под механицизмом понимаются все иногда противоречащие друг другу теории,  которые объясняют все физические явления с помощью  системы движений, подобных движению механизма. Нам представляется, что механицизм Декарта отличается от механицизма Галилея — Ньютона двумя существенными чертами. Первое, более очевидное, отличие только что отмечалось — это понятие силы. Для Галилея и Ньютона сила — это физическая реальность, не сводимая к свойствам пространства и движения; для Декарта же сила, как мы видели,— это свойство пространства. Механицизм Декарта противостоит также и атомизму, согласно которому именно атомы создают поля сил, а их скрытые движения объясняют все физические процессы.

УЧЕНИКИ ГАЛИЛЕЯ

К числу учеников Галилея мы относим не только тех, кто из его собственных уст воспринимал новую науку, но и его многочисленных корреспондентов, а также первое поколение ученых, научное мировоззрение которых формировалось на его трудах. В этом смысле Галилей имел много учеников не только в Италии, но и за ее пределами, особенно во Франции, прежде всего благодаря деятельности Марена Мерсенна (1588—1648), который, как мы уже говорили, перевел в 1634 г. "Механику" Галилея. Позже, когда переиздание и перевод "Диалога о двух главнейших системах" были запрещены, Мерсенн составил для своих соотечественников краткое изложение этой работы и распространил во Франции исследования Галилея по падению тяжелых тел; он был первым среди ученых того времени, кто поддерживал точку зрения о субъективном характере ощущений. Хотя в труде Мерсенна мы бы напрасно искали оригинальные идеи, он все же сыграл важную роль в распространении новой науки, информируя о работах других ученых, комментируя и пересказывая их, а иногда издавая полностью. Поэтому труды Мерсенна представляют собой неисчерпаемый источник сведений об уровне знаний в ту бурную эпоху. Неутомимый корреспондент крупнейших ученых того времени, Мерсенн информировал других, сам получал информацию, ставил проблемы, выдвигал возражения, выполняя, таким образом, функции сбора и распространения знаний, возложенные сейчас на большие международные научные журналы.


ЭВАНДЖЕЛИСТА ТОРРИЧЕЛЛИ


В    апреле   1641 г. Бенедетто Кастелли (1577—1644), профессор математики Римского университета и в прошлом ученик Галилея, посетил своего учителя, жившего тогда в Арчетри, и привез ему на просмотр рукопись о движении свободно падающих тел. Ее автором был Эванджелиста Торричелли (1608—1647), ученик Кастелли. Кастелли предложил Галилею взять Торричелли к себе в дом в качестве помощника в подготовке исследований по механике. Получив согласие Галилея, Торричелли в первой половине августа того же года переехал к нему в Арчетри. Но их сотрудничество продолжалось всего три месяца. Галилей умер. Великий герцог Тосканский, прибывший в Арчетри в связи со смертью Галилея, назначил Торричелли на ставшую вакантной должность придворного математика.

аучная деятельность Торричелли, бесспорно, самого блестящего ученика Галилея, относится к области физики и математики. Однако, следуя  примеру своего учителя, он не гнушается и практической деятельности. Узнав от Галилея о значении изготовления линз и подзорных труб, он с 1642 г. стал упорно заниматься этим и вскоре достиг такого совершенства, что намного превзошел наиболее знаменитых итальянских мастеров, изделия которых признаются крупнейшими достижениями оптики первой половины XVII века.

В дальнейшем мы будем говорить об открытии Торричелли атмосферного давления, открытии, которое больше других способствовало тому, что его имя стало бессмертным. Сейчас мы ограничимся лишь кратким рассмотрением его работ по механике, содержащихся в единственной опубликованной им книге, состоящей из трех частей. Первая и третья части посвящены геометрии, а вторая, озаглавленная "De motu gravium descendentium et proiectorum libri duo" ("О движении свободно падающих и брошенных тяжелых тел"), представляет собой ту рукопись, которую Кастелли принес на просмотр Галилею.

В первой книге этого трактата Торричелли ставит себе целью доказать постулат Галилея о равенстве скоростей тяжелых тел, падающих по наклонным плоскостям одинаковой высоты, и, не зная, что это уже сделано Галилеем, доказывает его. При этом он принимает в качестве постулата принцип, носящий сейчас имя Торричелли, о движении центров тяжести. Благодаря Торричелли при многочисленных применениях этого принципа (к наклонной плоскости, рычагу, движению по хорде круга и по параболе) были опровергнуты взгляды ряда авторитетных ученых, которые ставили в упрек Архимеду то, что он считал вертикальные направления двух нитей с подвешенными грузами у поверхности земли параллельными, а не сходящимися к центру Земли. Торричелли показал, что представление Архимеда   более   пригодно для теоретических физических исследований.

Во второй книге трактата Торричелли сначала рассматривает движение брошенных тел, обобщая подход, принятый в "Беседах" Галилея, где обсуждается лишь движение тел, брошенных по горизонтали. Только попутно, для доказательства, Галилей выдвинул утверждение, что если тело бросить из точки его падения со скоростью, равной, но противоположной той, с которой оно пришло в точку падения, то оно пройдет ту же параболу в обратном направлении. Торричелли же рассмотрел движение тела, брошенного под произвольным углом, и, применив к нему принципы Галилея, определил параболический характер траектории и установил другие, хорошо известные сейчас теоремы баллистики. В частности, обобщая наблюдение Галилея, он заметил, что движение брошенного тела — явление обратимое. Таким образом, представление о том, что динамические явления обратимы, т. е. что время в галилеевой механике упорядочено, но лишено ориентации, восходит к Галилею и Торричелли.

Торричелли приводит пять баллистических таблиц, по-видимому, первых таблиц в истории артиллерии, причем, опасаясь, что практики, для которых предназначены эти таблицы, не понимают латыни, он внезапно переходит на итальянский язык.

ДЖОВАННИ АЛЬФОНСО БОРЕЛЛИ

К ученикам Галилея относится также неаполитанец (по другим данным — мессинец) Джованни Альфонсо Борелли (1608—1679) — один из наиболее проницательных умов итальянской науки XVII века. Борелли предвосхитил ньютоново представление о том, что планеты стремятся к Солнцу по той же причине, по которой тяжелые тела стремятся к Земле. Его сравнение движения камня, вращающегося на краю пращи, и движения планеты вокруг Солнца, по почти единодушному мнению всех критиков, — первый зародыш теории динамического равновесия движущихся планет. Согласно Борелли, "инстинкт", который заставляет планету стремиться к Солнцу, уравновешивается тенденцией каждого тела удаляться от центра. Борелли считает эту vis repellens, или центробежную силу, как мы ее сейчас называем, обратно пропорциональной радиусу описываемой окружности.

В своей работе по механике "De vi percussionis" ("О силе удара"), 1667 г., более широкой по смыслу, чем это видно из названия, он приводит законы центрального соударения двух неупругих сфер, справедливые и сейчас. В этой работе он ставит себе целью определить, каково было бы эффективное движение падающих тел, если предположить (ex mera hypothesi — "чисто гипотетически", добавляет он с осмотрительностью, особенно необходимой, поскольку он был монахом), что тела принимают участие в равномерном круговом вращательном движении Земли. И он приходит к выводу об отклонении тел к востоку, которое было экспериментально подтверждено лишь в 1791 г. Джован Баттистой Гульельмини (?—1817) в опытах с падением тел с башни Азинелли в Болонье.

Лучшим творением Борелли, достойно венчающим все остальные его работы, является его труд "De motu animalium" ("О движении животных"), вышедший посмертно в двух томах в 1680— 1681 гг. в Риме, где Борелли умер в глубокой нищете.

В первом томе описываются строение, форма, действие и возможности мышц человека и животных. Во втором томе с помощью механических аналогий рассматриваются сокращения мышц, движения сердца, циркуляция крови, пищеварение. Эта работа, многократно переиздававшаяся, положила начало новому научному направлению — ятромеханике. Особенное восхищение вызывает глава XXII о полете птиц (De volatu), издававшаяся поэтому много раз отдельно.


МАЯТНИКОВЫЕ ЧАСЫ


Вскоре после открытия "медицейских планет", т. е. первых четырех спутников Юпитера, у Галилея родилась идея использовать их для определения долготы места, что, как известно, имеет громадное значение для мореплавателей. Теоретически определение долготы выглядит весьма просто: рассчитав для какого-то места эфемериды, определяющие момент, когда спутник входит в конус тени Юпитера, достаточно установить время, когда это явление наблюдается в другом месте, чтобы по разности этих времен найти разность долгот обоих мест. Но применение этого метода требует таблиц с эфемеридами и двух хронометров.

В 1612, затем в 1616 г. и еще позже в 1630 г. Галилей пытался вступить в переговоры с испанским правительством, чтобы передать ему это открытие, но его попытки не увенчались успехом. В 1636 г. он вновь обратился с этим предложением к Генеральным штатам Нидерландов, которые с удовольствием приняли это предложение, тотчас назначили специальную комиссию для его рассмотрения и постановили отправить в дар Галилею золотое колье стоимостью 500 флоринов. Комиссия отметила некоторые недостатки проекта Галилея, которые тот признал справедливыми, но вполне преодолимыми. Однако дело было не из тех, которые можно решить перепиской, поэтому Галилей предложил, чтобы к нему в Арчетри приехали представители Генеральных штатов. Друзья Галилея обратились к секретарю принца Оранского Константину Гюйгенсу, отцу Христиана Гюйгенса, с просьбой оказать содействие, используя свое высокое положение при Генеральных штатах. Константин Гюйгенс принял предложение и довел переговоры до благополучного конца. Однако весть о них дошла до кардинала Франческо Барберини, и тот немедленно приказал Генеральному инквизитору Флоренции воспрепятствовать переговорам. Поэтому Галилей прервал переговоры и отказался от дара Генеральных штатов, который как раз в эти дни ему доставила купеческая делегация.

15 августа 1636 г. во время переговоров Галилей писал Генеральным штатам: "У меня есть такой измеритель времени, что если бы сделать 4 или 6  таких приборов  и запустить их, то мы бы обнаружили (в подтверждение их точности), что измеряемое и показываемое ими время не только из часу в час, но изо дня в день, из месяца в месяц не отличалось бы на различных приборах даже на секунду, настолько одинаково они бы шли".

Нетрудно сообразить, что измеритель времени, о котором упоминает Галилей, должен был быть прибором, в котором используется изохронизм колебаний маятника. И действительно, в письме от июня 1637 г. Реалю (или Реалио — согласно принятому итальянизированному написанию), губернатору Голландских Индий, Галилей сообщает, что его часы представляют собой применение маятника, и описывает также специальный счетчик числа колебаний. В 1641 г., по словам Вивиани, ему "... пришло в голову, что можно добавить маятник к часам с гирями и с пружиной".

Уже глубоким стариком он поверил эти планы своему сыну Винченцо (ум. в 1649 г.). Отец и сын решили построить механизм (дошедший до нас благодаря чертежу Вивиани) с остроумным устройством часового спуска (так называемый "крючковый спуск"). То, что Винченцо Вивиани построил в действительности такие часы, установлено точно: это следует из инвентарной описи наследства его жены и из переписки Леопольдо де Медичи, который послал Буйо 21 августа 1659г. чертеж модели, "нарисованный столь же грубо, как и сама модель, находящаяся сейчас в моей комнате".

Христиан Гюйгенс (1629—1695) в письме от 12 января 1657 г. сообщил о созданных им маятниковых часах. В июне того же года он получил патент на эти часы, а в 1658 г. опубликовал свое открытие в сочинении "Horologium" ("Часы"). Знал ли о проекте Галилея Христиан Гюйгенс, сын Константина Гюйгенса, принимавшего большое участие в переговорах Галилея с Генеральными штатами и, в частности, знакомого с идеей Галилея о применении маятника в часах? Он всегда отрицал это, признавая лишь, что ему пришла в голову та же идея, что и Галилею, часы которого шли так же хорошо, как и его  собственные, и говорил, что целью создания часов он, как и Галилей, считал определение долготы места на море.

Мы не видим оснований не доверять голландскому ученому, конструкция часов которого уступает конструкции Галилея в механизме спуска, так как он сохранил старинное несовершенное устройство, но зато значительно превзошел Галилея, заменив гирю пружиной с балансом.


Страница 1 - 1 из 2
Начало | Пред. | 1 2 | След. | КонецВсе

© Все права защищены http://www.portal-slovo.ru

 
 
 
Rambler's Top100

Веб-студия Православные.Ру